# Pandigital Products: Euler Problem 32

Euler Problem 32 returns to pandigital numbers, which are numbers that contain one of each digit. Like so many of the Euler Problems, these numbers serve no practical purpose whatsoever, other than some entertainment value. You can find all pandigital numbers in base-10 in the Online Encyclopedia of Interegers (A050278). The Numberhile video explains everything you ever wanted to

The Numberhile video explains everything you ever wanted to know about pandigital numbers but were afraid to ask.

## Euler Problem 32 Definition

We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital.

The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital.

Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.

HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.

## Proposed Solution

The pandigital.9 function tests whether a string classifies as a pandigital number. The pandigital.prod vector is used to store the multiplication.

The only way to solve this problem is brute force and try all multiplications but we can limit the solution space to a manageable number. The multiplication needs to have ten digits. For example, when the starting number has two digits, the second number should have three digits so that the total has four digits, e.g.: 39 × 186 = 7254. When the first number only has one digit, the second number needs to have four digits.

pandigital.9 <- function(x) # Test if string is 9-pandigital
(length(x)==9 & sum(duplicated(x))==0 & sum(x==0)==0)

t <- proc.time()
pandigital.prod <- vector()
i <- 1
for (m in 2:100) {
if (m < 10) n_start <- 1234 else n_start <- 123
for (n in n_start:round(10000 / m)) {
# List of digits
digs <- as.numeric(unlist(strsplit(paste0(m, n, m * n), "")))
# is Pandigital?
if (pandigital.9(digs)) {
pandigital.prod[i] <- m * n
i <- i + 1
print(paste(m, "*", n, "=", m * n))
}
}
}
answer <- sum(unique(pandigital.prod))
print(answer)


Numbers can also be checked for pandigitality using mathematics instead of strings.

You can view the most recent version of this code on GitHub.

# Analysing soil moisture data in NetCDF format with the ncdf4 library

The netCDF format is popular in sciences that analyse sequential spatial data. It is a self-describing, machine-independent data format for creating, accessing and sharing array-oriented information. The netCDF format provides spatial time-series such as meteorological or environmental data. This article shows how to visualise and analyse this data format by reviewing soil moisture data published by the Australian Bureau of Statistics.

## Soil Moisture data

The Australian Bureau of Meteorology publishes hydrological data in both a simple map grid and in the NetCDF format. The map grid consists of a flat text file that requires a bit of data jujitsu before it can be used. The NetCDF format is much easier to deploy as it provides a three-dimensional matrix of spatial data over time.

We are looking at the possible relationship between sewer main blockages and deep soil moisture levels. You will need to manually download this dataset from the Bureau of Meteorology website. I have not been able to scrape the website automatically. For this analysis, I use the actual deep soil moisture level, aggregated monthly in NetCDF 4 format.

## Reading, Extracting and Transforming the netCDF format

The ncdf4 library, developed by David W. Pierce, provides the necessary functionality to manage this data. The first step is to load the data, extract the relevant information and transform the data for visualisation and analysis. When the data is read, it essentially forms a complex list that contains the metadata and the measurements.

The ncvar_get function extracts the data from the list. The lon, lat and dates variables are the dimensions of the moisture data. The time data is stored as the number of days since 1 January 1900. The spatial coordinates are stored in decimal degrees with 0.05-decimal degree intervals. The moisture data is a three-dimensional matrix with longitue, latitude and time as dimensions. Storing this data in this way will make it very easy to use.

library(ncdf4)
# Load data
bom <- nc_open("Hydroinformatics/SoilMoisture/sd_pct_Actual_month.nc")
print(bom) # Inspect the data

# Extract data
lon <- ncvar_get(bom, "longitude")
lat <- ncvar_get(bom, "latitude")
dates <- as.Date("1900-01-01") + ncvar_get(bom, "time")
moisture <- ncvar_get(bom, "sd_pct")
dimnames(moisture) <- list(lon, lat, dates)


## Visualising the data

The first step is to check the overall data. This first code snippet extracts a matrix from the cube for 31 July 2017 and plots it. This code pipe extracts the date for the end of July 2017 and creates a data frame which is passed to ggplot for visualisation. Although I use the Tidyverse, I still need reshape2 because the gather function does not like matrices.

library(tidyverse)
library(RColorBrewer)
library(reshape2)

d <- "2017-07-31"
m <- moisture[, , which(dates == d)] %>%
melt(varnames = c("lon", "lat")) %>%
subset(!is.na(value))

ggplot(m, aes(x = lon, y = lat, fill = value)) + borders("world") +
geom_tile() +
scale_fill_gradientn(colors = brewer.pal(9, "Blues")) +
labs(title = "Total moisture in deep soil layer (100-500 cm)",
subtitle = format(as.Date(d), "%d %B %Y")) +
xlim(range(lon)) + ylim(range(lat)) + coord_fixed()


With the ggmap package we can create a nice map of a local area.

library(ggmap)
loc <- round(geocode("Bendigo") / 0.05) * 0.05
map_tile <- get_map(loc, zoom = 12, color = "bw") %>%
ggmap()

map_tile +
geom_tile(data = m, aes(x = lon, y = lat, fill = value), alpha = 0.8) +
scale_fill_gradientn(colors = brewer.pal(9, "Blues")) +
labs(title = "Total moisture in deep soil layer (100-500 cm)",
subtitle = format(as.Date(d), "%d %B %Y"))


## Analysing the data

For my analysis, I am interested in the time series of moisture data for a specific point on the map. The previous code slices the data horizontally over time. To create a time series we can pierce through the data for a specific coordinate. The purpose of this time series is to investigate the relationship between sewer main blockages and deep soil data, which can be a topic for a future post.

mt <- data.frame(date = dates,
dp = moisture[as.character(loc$lon), as.character(loc$lat), ])
ggplot(mt, aes(x = date, y = dp)) + geom_line() +
labs(x = "Month",
y = "Moisture",
title = "Total moisture in deep soil layer (100-500 cm)",
subtitle = paste(as.character(loc), collapse = ", "))


The latest version of this code is available on my GitHub repository.

# Pacific Island Hopping using R and iGraph

Last month I enjoyed a relaxing holiday in the tropical paradise of Vanuatu. One rainy day I contemplated how to go island hopping across the Pacific ocean visiting as many island nations as possible. The Pacific ocean is a massive body of water between, Asia and the Americas, which covers almost half the surface of the earth. The southern Pacific is strewn with island nations from Australia to Chile. In this post, I describe how to use R to plan your next Pacific island hopping journey.

The Pacific Ocean.

## Listing all airports

My first step was to create a list of flight connections between each of the island nations in the Pacific ocean. I am not aware of a publically available data set of international flights so unfortunately, I created a list manually (if you do know of such data set, then please leave a comment).

My manual research resulted in a list of international flights from or to island airports. This list might not be complete, but it is a start. My Pinterest board with Pacific island airline route maps was the information source for this list.

The first code section reads the list of airline routes and uses the ggmap package to extract their coordinates from Google maps. The data frame with airport coordinates is saved for future reference to avoid repeatedly pinging Google for the same information.

# Init
library(tidyverse)
library(ggmap)
library(ggrepel)
library(geosphere)

# Read flight list and airport list
flights <- read.csv("Geography/PacificFlights.csv", stringsAsFactors = FALSE)
f <- "Geography/airports.csv"
if (file.exists(f)) {
airports <- read.csv(f)
} else airports <- data.frame(airport = NA, lat = NA, lon = NA)

# Lookup coordinates for new airports
all_airports <- unique(c(flights$From, flights$To))
new_airports <- all_airports[!(all_airports %in% airports$airport)] if (length(new_airports) != 0) { coords <- geocode(new_airports) new_airports <- data.frame(airport = new_airports, coords) airports <- rbind(airports, new_airports) airports <- subset(airports, !is.na(airport)) write.csv(airports, "Geography/airports.csv", row.names = FALSE) } # Add coordinates to flight list flights <- merge(flights, airports, by.x="From", by.y="airport") flights <- merge(flights, airports, by.x="To", by.y="airport")  ## Create the map To create a map, I modified the code to create flight maps I published in an earlier post. This code had to be changed to centre the map on the Pacific. Mapping the Pacific ocean is problematic because the -180 and +180 degree meridians meet around the date line. Longitudes west of the antemeridian are positive, while longitudes east are negative. The world2 data set in the borders function of the ggplot2 package is centred on the Pacific ocean. To enable plotting on this map, all negative longitudes are made positive by adding 360 degrees to them. # Pacific centric flights$lon.x[flights$lon.x < 0] <- flights$lon.x[flights$lon.x < 0] + 360 flights$lon.y[flights$lon.y < 0] <- flights$lon.y[flights$lon.y < 0] + 360 airports$lon[airports$lon < 0] <- airports$lon[airports$lon < 0] + 360 # Plot flight routes worldmap <- borders("world2", colour="#efede1", fill="#efede1") ggplot() + worldmap + geom_point(data=airports, aes(x = lon, y = lat), col = "#970027") + geom_text_repel(data=airports, aes(x = lon, y = lat, label = airport), col = "black", size = 2, segment.color = NA) + geom_curve(data=flights, aes(x = lon.x, y = lat.x, xend = lon.y, yend = lat.y, col = Airline), size = .4, curvature = .2) + theme(panel.background = element_rect(fill="white"), axis.line = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank() ) + xlim(100, 300) + ylim(-40,40)  ## Pacific Island Hopping This visualisation is aesthetic and full of context, but it is not the best visualisation to solve the travel problem. This map can also be expressed as a graph with nodes (airports) and edges (routes). Once the map is represented mathematically, we can generate travel routes and begin our Pacific Island hopping. The igraph package converts the flight list to a graph that can be analysed and plotted. The shortest_path function can then be used to plan routes. If I would want to travel from Auckland to Saipan in the Northern Mariana Islands, I have to go through Port Vila, Honiara, Port Moresby, Chuuk, Guam and then to Saipan. I am pretty sure there are quicker ways to get there, but this would be an exciting journey through the Pacific. library(igraph) g <- graph_from_edgelist(as.matrix(flights[,1:2]), directed = FALSE) par(mar = rep(0, 4)) plot(g, layout = layout.fruchterman.reingold, vertex.size=0) V(g) shortest_paths(g, "Auckland", "Saipan")  View the latest version of this code on GitHub. # Digit fifth powers: Euler Problem 30 Euler problem 30 is another number crunching problem that deals with numbers to the power of five. Two other Euler problems dealt with raising numbers to a power. The previous problem looked at permutations of powers and problem 16 asks for the sum of the digits of $2^{1000}$. Numberphile has a nice video about a trick to quickly calculate the fifth root of a number that makes you look like a mathematical wizard. ## Euler Problem 30 Definition Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits: $1634 = 1^4 + 6^4 + 3^4 + 4^4$ $8208 = 8^4 + 2^4 + 0^4 + 8^4$ $9474 = 9^4 + 4^4 + 7^4 + 4^4$ As $1 = 1^4$ is not a sum, it is not included. The sum of these numbers is $1634 + 8208 + 9474 = 19316$. Find the sum of all the numbers that can be written as the sum of fifth powers of their digits. ## Proposed Solution The problem asks for a brute-force solution but we have a halting problem. How far do we need to go before we can be certain there are no sums of fifth power digits? The highest digit is $9$ and $9^5=59049$, which has five digits. If we then look at $5 \times 9^5=295245$, which has six digits and a good endpoint for the loop. The loop itself cycles through the digits of each number and tests whether the sum of the fifth powers equals the number. largest <- 6 * 9^5 answer <- 0 for (n in 2:largest) { power.sum <-0 i <- n while (i > 0) { d <- i %% 10 i <- floor(i / 10) power.sum <- power.sum + d^5 } if (power.sum == n) { print(n) answer <- answer + n } } print(answer)  View the most recent version of this code on GitHub. # Visualising Water Consumption using a Geographic Bubble Chart A geographic bubble chart is a straightforward method to visualise quantitative information with a geospatial relationship. Last week I was in Vietnam helping the Phú Thọ Water Supply Joint Stock Company with their data science. They asked me to create a map of a sample of their water consumption data. In this post, I share this little ditty to explain how to plot a bubble chart over a map using the In this post, I share this little ditty to explain how to plot a bubble chart over a map using the ggmap package. ## Load and Explore the Data The sample data contains a list of just over 100 readings from water meters in the city of Việt Trì in Vietnam, plus their geospatial location. This data uses the World Geodetic System of 1984 (WGS84), which is compatible with Google Maps and similar systems. # Load the data water <- read.csv("PhuTho/MeterReads.csv") water$Consumption <- water$read_new - water$read_old

# Summarise the data
head(water)
summary(water$Consumption)  The consumption at each connection is between 0 and 529 cubic metres, with a mean consumption of 23.45 cubic metres. ## Visualise the data with a geographic bubble chart With the ggmap extension of the ggplot package, we can visualise any spatial data set on a map. The only condition is that the spatial coordinates are in the WGS84 datum. The ggmap package adds a geographical layer to ggplot by adding a Google Maps or Open Street Map canvas. The first step is to download the map canvas. To do this, you need to know the centre coordinates and the zoom factor. To determine the perfect zoon factor requires some trial and error. The ggmap package provides for various map types, which are described in detail in the documentation. # Load map library library(ggmap) # Find the middle of the points centre <- c(mean(range(water$lon)), mean(range(water$lat))) # Download the satellite image viettri <- get_map(centre, zoom = 17, maptype = "hybrid") g <- ggmap(viettri)  The ggmap package follows the same conventions as ggplot. We first call the map layer and then add any required geom. The point geom creates a nice bubble chart when used in combination with the scale_size_area option. This option scales the points to a maximum size so that they are easily visible. The transparency (alpha) minimises problems with overplotting. This last code snippet plots the map with water consumption. # Add the points g + geom_point(data = reads, aes(x = lon, y = lat, size = Consumption), shape = 21, colour = "dodgerblue4", fill = "dodgerblue", alpha = .5) + scale_size_area(max_size = 20) + # Size of the biggest point ggtitle("Việt Trì sự tiêu thụ nước")  You can find the code and data for this article on my GitHub repository. With thanks to Ms Quy and Mr Tuyen of Phu Tho water for their permission to use this data. This map visualises water consumption in the targeted area of Việt Trì. The larger the bubble, the larger the consumption. It is no surprise that two commercial customers used the most water. Ggplot automatically adds the legend for the consumption variable. # Data Science for Water Utilities Using R Data science comes natural to water utilities because of the engineering competencies required to deliver clean and refreshing water. Many water managers I speak to are interested in a more systematic approach to creating value from data. My work in this area is gaining popularity. Two weeks ago I was the keynote speaker at an asset data conference in New Zealand. My paper about data science strategy for water utilities is the most downloaded paper this year. This week I am in Vietnam, assisting the local Phú Thọ water company with their data science problems. In all my talks and publications I emphasise the importance of collaboration between utilities and that we should share code because we are all sharing the same problems. I am hoping to develop a global data science coalition for water services to achieve this goal. My book about making water utilities more customer-centric will soon be published, so time to start another project. My new book will be about Data Science for Water Utilities Using R. This book is currently not more than a collection of existing articles, code snippets and production work from my job. The cover is finished because it motivates me to keep writing. This article describes my proposed chapter structure with some example code snippets. The most recent version of this code can be found on my GitHub repository. Feel free to leave a comment at the bottom of this article if you like to see additional problems discussed, or if you want to participate by sharing code. ## Data Science for Water Utilities The first chapter will provide a strategic overview of data science and how water utilities can use this discipline to create value. This chapter is based on earlier articles and recent presentations on the topic. ## Using R This chapter will make a case for using R by providing just enough information for readers to be able to follow the code in the book. A recurring theme at a data conference in Auckland I spoke at was the problems posed by the high reliance on spreadsheets. This chapter will explain why code is superior and how to use R to achieve this advantage. ## Reservoirs This first practical chapter will discuss how to manage data from reservoirs. The core problem is to find the relationship between depth and volume based on bathymetric survey data. I started toying with bathymetric data from Pretyboy Reservoir in the state of Mayne. The code below downloads and visualises this data. # RESERVOIRS library(tidyverse) library(RColorBrewer) library(gridExtra) # Read data if (!file.exists("Hydroinformatics/prettyboy.csv")) { url <- "http://www.mgs.md.gov/ReservoirDataPoints/PrettyBoy1998.dat" prettyboy <- read.csv(url, skip = 2, header = FALSE) names(prettyboy) <- read.csv(url, nrows = 1, header = FALSE, stringsAsFactors = FALSE) write_csv(prettyboy, "Hydroinformatics/prettyboy.csv") } else prettyboy <- read_csv("Hydroinformatics/prettyboy.csv") head(prettyboy) # Remove extremes, duplicates and Anomaly ext <- c(which(prettyboy$Easting == min(prettyboy$Easting)), which(prettyboy$Easting == max(prettyboy$Easting)), which(duplicated(prettyboy))) prettyboy <- prettyboy[-ext, ] # Visualise reservoir bathymetry_colours <- c(rev(brewer.pal(3, "Greens"))[-2:-3], brewer.pal(9, "Blues")[-1:-3]) ggplot(prettyboy, aes(x = Easting, y = Northing, colour = Depth)) + geom_point(size = .1) + coord_equal() + scale_colour_gradientn(colors = bathymetry_colours)  Bathymetric survey of the Prettyboy reservoir. In the plot, you can see the lines where the survey boat took soundings. I am working on converting this survey data to a non-convex hull to calculate its volume and to determine the relationship between depth and volume. Other areas to be covered in this chapter could be hydrology and meteorology, but alas I am not qualified in these subjects. I hope to find somebody who can help me with this part. ## Water Quality The quality of water in tanks and networks is tested using samples. One of the issues in analysing water quality data is the low number of data points due to the cost of laboratory testing. There has been some discussion about how to correctly calculate percentiles and other statistical issues. This chapter will also describe how to create a water system index to communicate the performance of a water system to non-experts. The last topic in this chapter discusses analysing taste testing data. Water system performance index. ## Water Balance We have developed a model to produce water balances based on SCADA data. I am currently generalising this idea by using the igraph package to define water network geometry. Next year I will start experimenting with a predictive model for water consumption that uses data from the Australian Census and historical data to predict future use. ## SCADA Data Data from SCADA systems are time series. This chapter will discuss how to model this data, find spikes in the readings and conduct predictive analyses. ## Customer Perception This chapter is based on my dissertation on customer perception. Most water utilities do not extract the full value from their customer surveys. In this chapter, I will show how to analyse latent variables in survey data. The code below loads the cleaned data set of the results of a customer survey I undertook in Australia and the USA. The first ten variables are the Personal Involvement Index. This code does a quick exploratory analysis using a boxplot and visualises a factor analysis that uncovers two latent variables. # CUSTOMERS library(psych) # Read data customers <- read_csv("Hydroinformatics/customers.csv") # Exploratory Analyis p1 <- customers[,1:10] %>% gather %>% ggplot(aes(x = key, y = value)) + geom_boxplot() + xlab("Item") + ylab("Response") + ggtitle("Personal Involvement Index") # Factor analysis fap <- fa.parallel(customers[,1:10]) grid.arrange(p1, ncol= 2) customers[,1:10] %>% fa(nfactors = fap$nfact, rotate = "promax") %>%
fa.diagram(main = "Factor Analysis")


## Customer Complaints

Customer complaints are a gift to the business. Unfortunately, most business view complaints punitively. This chapter will explain how to analyse and respond to complaints to improve the level of service to customers.

## Customer Contacts

One of the topics in this chapter is how to use Erlang-C modelling to predict staffing levels in contact centres.

## Economics

Last but not least, economics is the engine room of any organisation. In the early stages of my career, I specialised in cost estimating, including probabilistic methods. This chapter will include an introduction to Monte Carlo simulation to improve cost estimation reliability.

## Data Science for Water Utilities Mind Map

This book is still in its early stages. The mind map below shows the work in progress on the proposed chapters and topic.

## Data Science for Water Utilities: The next steps

I started writing bits and pieces of Data Science for Water Utilities using the fabulous bookdown system in R-Studio. It will take me about a year to realise this vision as I need to increase my analytical skills to write about such a broad range of topics. I would love to get some feedback on these two questions:

1. What is missing in this list? Any practical problems I should include?
2. Would you like to donate some data and code to include in the book?

Feel free to leave a comment below.

# Euler Problem 29: Distinct Powers

Euler Problem 29 is another permutation problem that is quite easy to solve using brute force. The MathBlog site by Kristian Edlund has a nice solution using only pen and paper.

Raising number to a power can have interesting results. The video below explains why this pandigital formula approximates $e$ to billions of decimals:

$(1 + 9^{-4^{6 \times 7}})^{3^{2^{85}}} \approx e$

## Euler Problem 29 Definition

Consider all integer combinations of: $a^b$ for $2 \leq a \leq 5$ and $\leq b \leq 5$.

$2^2=4, \quad 2^3 = 8,\quad 2^4 = 16,\quad 2^5 = 32$

$3^2 = 9,\quad 3^3 = 27,\quad 3^4 = 81,\quad 3^5 = 243$

$4^2 = 16,\quad 4^3 = 64,\quad 4^4 = 256, \quad 4^5 = 1024$

$5^2 = 25,\quad 5^3 = 125,\quad 5^4 = 625,\quad 5^5 = 3125$

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

$4, \ 8, \ 9, \ 16, \ 25, \ 27, \ 32, \ 64, \ 81, \ 125, \ 243, \ 256,\ 625, \ 1024, \ 3125$

How many distinct terms are in the sequence generated by $a^b$ for $2 \leq a \leq 100$ and $2 \leq b \leq 100$?

## Brute Force Solution

This code simply calculates all powers from $2^2$ to $2^{1000}$ and determines the number of unique values. Since we are only interested in their uniqueness and not the precise value, there is no need to use Multiple Precision Arithmetic.

# Initialisation
target <- 100
terms <- vector()
i <- 1
# Loop through values of a and b and store powers in vector
for (a in 2:target) {
for (b in 2:target) {
terms[i] <- a^b
i <- i + 1
}
}
# Determine the number of distinct powers
answer <- length(unique(terms))
print(answer)


View the latest version of this code on GitHub.

# How Virtual Tags have transformed SCADA data analysis

Yesterday, I delivered the International Keynote at the Asset Data & Insights Conference in Auckland, New Zealand (the place where R was originally developed). My talk was about how to create value from SCADA data, using a method I developed with my colleagues called Virtual Tags. My talk started with my views on data science strategy, which I also presented to the R User Group in Melbourne. In this post, I like to explain what Virtual Tags are, and how they can be used to improve the value of SCADA data.

## SCADA Systems at Water Treatment Plants

Water treatment plants are mostly fully automated systems, using analysers and the SCADA system to communicate this data. For those of you not familiar with water treatment plants, this video below gives a cute summary of the process.

Water treatment plants need sensors to measure a broad range of parameters. These instruments record data 24 hours per day to control operations. When the process operates effectively, all values fall within a very narrow band. All these values are stored by the SCADA system for typically a year, after which they are destroyed to save storage space.

Water treatment plants measure turbidity (clarity of the water) to assess the effectiveness of filtration. The code snippet below simulates the measurements from a turbidity instrument at a water treatment plant over five hours. The code simulates measurements from a turbidity instrument at a water treatment plant over a period of five hours. Most water quality data has a log-normal distribution with a narrow standard deviation.

# Simulate measured data
set.seed(1234)
n <- 300
wtp <- data.frame(DateTime = seq.POSIXt(ISOdate(1910, 1, 1), length.out = n, by = 60),
WTP = rlnorm(n, log(.1), .01))
library(ggplot2)
p <- ggplot(wtp, aes(x = DateTime, y = WTP)) + geom_line(colour = "grey") +
ylim(0.09, 0.11) + ylab("Turbidity") + ggtitle("Turbidity simulation")
p


## SCADA Historian

The data generated by the SCADA system is used to take operational decisions. The data is created and structured to make decisions in the present, not to solve problems in the future. SCADA Historian systems archive this information for future analysis. Historian systems only store new values when the new reading is more or less than a certain percentage than the previous one. This method saves storage space without sacrificing much accuracy.

For example, when an instrument reads 0.20 and the limit is set at 5%, new values are only recorded when they are below 0.19 or above 0.21. Any further values are stored when they deviate 5% from the new value, and so on. The code snippet below simulates this behaviour, based on the simulated turbidity readings generated earlier. This Historian only stores the data points marked in black.

# Historise data
threshold <- 0.03
h <- 1 # First historised point
# Starting conditions
wtp$historise <- FALSE wtp$historise[c(1, n)] <- TRUE
# Testing for delta <> threshold
for (i in 2:nrow(wtp)) {
delta <- wtp$WTP[i] / wtp$WTP[h] if (delta > (1 + threshold) | delta < (1 - threshold)) {
wtp$historise[i] <- TRUE h <- i } } historian <- subset(wtp, historise == TRUE) historian$Source <- "Historian"
p <- p + geom_point(data = historian, aes(x = DateTime, y = WTP)) + ggtitle("Historised data")
p


## Virtual Tags

This standard method to generate and store SCADA data works fine to operate systems but does not work so well when using the data for posthoc analysis. The data in Historian is an unequally-spaced time series which makes it harder to analyse the data. The Virtual Tag approach expands these unequal time series to an equally-spaced one, using constant interpolation.

The vt function undertakes the constant interpolation using the approx function. The functionvt is applied to all the DateTime values, using the historised data points. The red line shows how the value is constant until it jumps by more than 5%. This example demonstrates that we have a steady process with some minor spikes, which is the expected outcome of this simulation.

# Create Virtual Ttags
vt <- function(t) approx(historian$DateTime, historian$WTP, xout = t, method = "constant")
turbidity <- lapply(as.data.frame(wtp$DateTime), vt) wtp$VirtualTag <- turbidity[[1]]$y p + geom_line(data = wtp, aes(x = DateTime, y = VirtualTag), colour = "red") + ggtitle("Virtual Tags")  You can find the latest version of this code on GitHub. The next step in Virtual Tags is to combine the tags from different data points. For example, we are only interested in the turbidity readings when the filter was running. We can do this by combining this data with a valve status or flow in the filter. This approach might seem cumbersome but it simplifies analysing data from Historian. Virtual Tags enables several analytical processes that would otherwise be hard to. This system also adds context to the SCADA information by linking tags to each other and the processes they describe. If you are interested in more detail, then please download the technical manual for Virtual Tags and how they are implemented in SQL. ## The Presentation And finally, these are the slides of my keynote presentation. # The Ulam Spiral: Euler Problem 28 Euler Problem 28 takes us to the world of the Ulam Spiral. This is a spiral that contains sequential positive integers in a square spiral, marking the prime numbers. Stanislaw Ulam discovered that a lot of primes are located along the diagonals. These diagonals can be described as polynomials. The Ulam Spiral is thus a way of generating quadratic primes (Euler Problem 27). Ulam Spiral (WikiMedia). ## Euler Problem 28 Definition Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 25 20 07 08 09 10 19 06 01 02 11 18 05 04 03 12 17 16 15 14 13 It can be verified that the sum of the numbers on the diagonals is 101. What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way? ## Proposed Solution To solve this problem we do not need to create a matrix. This code calculates the values of the corners of a matrix with size $n$. The lowest number in the matrix with size $n$ is $n(n-3)+4$. The numbers increase by $n-1$. The code steps through all matrices from size 3 to 1001. The solution uses only the uneven sized matrices because these have a centre. The answer to the problem is the sum of all numbers. size <- 1001 # Size of matrix answer <- 1 # Starting number # Define corners of subsequent matrices for (n in seq(from = 3, to = size, by = 2)) { corners <- seq(from = n * (n - 3) + 3, by = n - 1, length.out = 4) answer <- answer + sum(corners) } print(answer)  ## Plotting the Ulam Spiral We can go beyond Euler Problem 28 and play with the mathematics. This code snippet plots all the prime numbers in the Ulam Spiral. Watch the video for an explanation of the patterns that appear along the diagonals. Ulam Spiral prime numbers. The code creates a matrix of the required size and fills it with the Ulam Spiral. The code then identifies all primes using the is.prime function from Euler Problem 7. A heat map visualises the results. # Ulam Spiral size <- 201 # Size of matrix ulam <- matrix(ncol = size, nrow = size) mid <- floor(size / 2 + 1) ulam[mid, mid] <- 1 for (n in seq(from = 3, to = size, by = 2)) { numbers <- (n * (n - 4) + 5) : ((n + 2) * ((n + 2) - 4) + 4) d <- mid - floor(n / 2) l <- length(numbers) ulam[d, d:(d + n - 1)] <- numbers[(l - n + 1):l] ulam[d + n - 1, (d + n - 1):d] <- numbers[(n - 1):(n - 2 + n)] ulam[(d + 1):(d + n - 2), d] <- numbers[(l - n):(l - 2 * n + 3)] ulam[(d + 1):(d + n - 2), d + n - 1] <- numbers[1:(n - 2)] } ulam.primes &lt;- apply(ulam, c(1, 2), is.prime) # Visualise library(ggplot2) library(reshape2) ulam.primes <- melt(ulam.primes) ggplot(ulam.primes, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + scale_fill_manual(values = c("white", "black")) + guides(fill=FALSE) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank()) + theme(axis.title.x=element_blank(), axis.text.x=element_blank(), axis.ticks.x=element_blank(), axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank() )  View the latest version of this code on GitHub. # Using the iGraph package to Analyse the Enron Corpus The Enron scandal is one of the most famous corporate governance failures in the history of capitalism. The case itself is interesting for its sake, but in this post, I am more interested in one of the data sets that the subsequent investigation has provided. This blog post analyses an extensive collection of e-mails from former Enron employees. The Enron corpus is analysed using network analysis tools provided by the iGraph package. Network analysis is a versatile technique that can be used to add value to a lot of different data sets, including the complex corporate relationships of Donald Trump. ## The Enron Corpus As part of their inquiries, The Federal Energy Regulatory Commission used an extensive collection of emails from Enron employees. The Enron corpus is one of the only publicly available collections of emails available for research. This dataset also provides a fascinating playground for citizen data scientists. The set has privacy issues as it contains messages from living people. When analysing this data set, we need to keep in mind that the majority of former Enron employees were innocent people who lost their jobs due to the greed of their overlords. The code in this post only analyses the e-mail headers, ignoring the content. Laid-off Enron employees outside Enron headquarters as the company collapsed in 2001. The Enron Corpus is a large database of half a million of emails generated by more than 100 Enron employees. You can download the corpus from the Carnegie Mellon School of Computer Science. The first code snippet downloads the 7 May 2015 version of the dataset (about 423Mb, tarred and gzipped) and untars it to your working directory. # Enron Email Dataset: https://www.cs.cmu.edu/~./enron/ download.file("https://www.cs.cmu.edu/~./enron/enron_mail_20150507.tgz", destfile = "enron_mail_20150507.tgz") untar("enron_mail_20150507.tgz")  ## Preparing the Data The main folder is maildir, which holds all the personal accounts. Our first task is to load the required libraries and create a list of available emails. This code results in 517,401 e-mail files with 44,859 emails in the inboxes of users. # E-mail corpus consists of nested folders per user with e-mails as text files # Create list of all available e-mails emails <- list.files("maildir/", full.names = T, recursive = T) length(emails) # Filter by inbox only emails <- emails[grep("/inbox", emails)] length(emails)  The bulk of the code creates a list of emails between Enron employees. The code performs a lot of string manipulations to extract the information from the text files. The content of the e-mails is ignored, the code only retrieves the sender and the receiver. The analysis is limited to e-mails between employees in the corpus. Only those receivers whose inbox forms part of the analysis are included. The result of this code is a data frame with the usernames of the sender and receiver for each email. The data frame contains 2779 emails that meet the criteria. # Create list of sender and receiver (inbox owner) inboxes <- data.frame( from = apply(as.data.frame(emails), 1, function(x){readLines(x, warn = F)[3]}), to = emails, stringsAsFactors = F ) # Keep only enron.com and strip all but username library(stringr) # String manipulation inboxes <- inboxes[grepl("@enron.com", inboxes$from),]
inboxes$from <- str_sub(inboxes$from, 7, nchar(inboxes$from) - 10) to <- str_split(inboxes$to, "/")
inboxes$to <- sapply(to, "[", 3) # Create list of usernames users <- data.frame(user = paste0("maildir/", unique(inboxes$to)))

# Remove those without sent mails
sent <- apply(users, 1, function(x){sum(grepl("sent", dir(x)))})
users <- subset(users, sent != 0)

# Replace username with e-mail name
users$mailname <- NA for (i in 1:nrow(users)){ sentmail <- dir(paste0(users$user[i], "/sent_items/"))
name <- readLines(paste0(users$user[i], "/sent_items/", sentmail[1]), warn = F)[3] name <- str_sub(name, 7, nchar(name)-10) users$mailname[i] <- name
}
users$user <- str_sub(users$user, 9)
inboxes <- merge(inboxes, by.x="to", users, by.y="user")
inboxes <- data.frame(from = inboxes$from, to = inboxes$mailname)

inboxes$from <- as.character(inboxes$from)
inboxes$to <- as.character(inboxes$to)

# Only e-mails between inbox users
inboxes <- inboxes[inboxes$from %in% inboxes$to,]

# Remove no.address
inboxes <- subset(inboxes, from != "no.address" & to != "no.address")

# Remove emails to self
inboxes <- subset(inboxes, inboxes$from != inboxes$to)


## Network Analysis

The last code snippet defines a graph from the table of e-mails. Each employee is a node in the network, and each e-mail is an edge (line). The iGraph package is a powerful tool to analyse networks. The graph_from_edgelist function creates a network object that can be analysed using the iGraph package. The graph is directed because the information flows from the sender to the receiver.

In the next step, the Spingglass algorithm finds community structure within the data. A community is a group of nodes that are more connected with each other than with any other node.

The last step visualises the network. The diagram is drawn using the Fruchterman-Reingold algorithm, which places the most connected nodes at the centre of the picture. The background colours in the diagram indicate the eight communities.

The graph tells us a lot about the group of employees in the Enron corpus and how they relate to each other. Each of the communities represents a tightly connected group of employees that mainly e-mail each other. Any connections between communities are shown in red. When the vertex.label = NA line is removed, the usernames are displayed at each node.

We can see groups that never email each other, lonely hangers-on and tightly knit cliques within Enron. In the centre of the graph we see w few individuals who are connectors between groups because they send a lot of emails to people outside their community. On the fringes of the graph are the hangers-on who only once or twice emailed somebody in the corpus but were still included in the investigation.

library(igraph)
g <- graph_from_edgelist(as.matrix(inboxes), directed = T)
coms <- spinglass.community(g)

# Plot network
par(mar = c(0,0,2,0))
plot(coms, g,
vertex.label=NA,
layout = layout.fruchterman.reingold,
vertex.size = 3
)


View the most recent version of the code on GitHub.

This analysis provides only a quick glimpse into the knowledge contained in the Enron corpus. An extensive range of tools is available to analyse such networks. An interesting exercise would be to overlap this network with the organisation chart to see the relationships between teams. Have fun playing with this fantastic data set!