Euler Problem 13: Large Sum of 1000 Digits

Euler Problem 13 asks to add one hundred numbers with fifty digits. This seems like a simple problem where it not that most computers are not designed to deal with numbers with a lot of integers. For example:

 2^{64} = 18446744073709551616

When asking R to compute this value we get 1.844674e+19, losing most of the digits and limiting the accuracy of the results. Computers solve this problem using Arbitrary-precision Arithmetic. There are many software libraries that can process long integers without loosing accuracy. Euler Problem 13 requires this type of approach.

Euler Problem 13 Definition

Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.


The easy way to solve this problem is to use the gmp package for working with very large integers. This package uses a special number types such as Big Rational and Big Integer. The number of digits in these number types is only limited by the size of the memory.

numbers <- readLines("Euler/p013_numbers.txt")
digits <- sum(as.bigz(numbers))
answer <- substr(as.character(digits),1,10)

Using Base-R

To find the solution to this problem using only base R, I wrote a function to add numbers using strings instead of integers. The function adds leading zeros to the smallest number to make them both the same length. The function then proceeds to add numbers in the same way we were taught in primary school. This function can in principle be used for several other Euler Problems using large integers.

# Add numbers with many digits
big.add <- function(a, b) {
    # Add leading zeros to smallest numer
    if (nchar(a) < nchar(b)) 
        a <- paste0(paste(rep(0, nchar(b) - nchar(a)), collapse = ""), a) 
    if (nchar(a) > nchar(b)) 
        b <- paste0(paste(rep(0, nchar(a) - nchar(b)), collapse = ""), b)
    solution <- vector()
    remainder <- 0
    for (i in nchar(b):1) {
        p <- as.numeric(substr(a, i, i))
        q <- as.numeric(substr(b, i, i))
        r <- p + q + remainder 
        if (r >= 10 & i!=1) {
            solution <- c(solution, r %% 10)
            remainder <- (r - (r %% 10))/10
        } else {
            solution <- c(solution, r)
            remainder <- 0
    return(paste(rev(solution), collapse = ""))

With this function, the problem is easy to solve. The second part of the code runs this function over the one hundred numbers provided on the Euler Problem page and calculates the answer.

numbers <- readLines("Euler/p013_numbers.txt")
for (i in numbers) {
    answer <- big.add(answer, i)
answer <- substr(answer, 1, 10)

Multiplying Big Numbers

You can expand this function to multiply a very large number with a smaller number using the Reduce function. This function adds the number a to itself, using the big.add function. The outcome of the addition is used in the next iteration until it has been repeated b times. The number b in this function needs to be a ‘low’ number because it uses a vector of the length b.

big.mult <- function(a, b) {
    Reduce(big.add, rep(a, as.numeric(b)))

Euler Problem 12: Highly Divisible Triangular Number

Euler Problem 12: Divisors of triangular numbers.

The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10 (Wikipedia).

Euler Problem 12 takes us to the realm of triangular numbers and proper divisors.

The image on the left shows a hands-on method to visualise the number of divisors of an integer. Cuisenaire rods are learning aids that provide a hands-on way to explore mathematics.

Euler Problem 12 Definition

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 . The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, \ldots Let us list the factors of the first seven triangle numbers:

1: 1

3: 1, 3

6: 1, 2, 3, 6

10: 1, 2, 5, 10

15: 1, 3, 5, 15

21: 1, 3, 7 ,21

28: 1, 2, 4, 7, 14, 28

We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors?


Vishal Kataria explains a simple method to determine the number of divisors using prime factorization as explained by in his video below. The prime factorization of n is given by:

n = p^{\alpha_1}_1 \times p^{\alpha_2}_2 \times p^{\alpha_k}_k

The number of proper divisors is:

d = (\alpha_1 + 1) (\alpha_2 + 1) \ldots (\alpha_k + 1)

The code reuses the prime factorisation function developed for Euler Problem 3. This function results in a vector of all prime factors, e.g. the prime factors of 28 are 2, 2 and 7.

The code to solve this problem determines the values for alpha using the run length function. This function counts the number of times each element in a sequence is repeated. The outcome of this function is a vector of the values and the number of times each is repeated. The prime factors of 28 are 2 and 7 and their run lengths are 2 and 1. The number of divisors can now be determined.

28 = 2^2 \times 7^1

d = (2+1)(1+1) = 6

The code to solve Euler Problem 12 is shown below. The loop continues until it finds a triangular number with 500 divisors. The first two lines increment the index and create the next triangular number. The third line in the loop determines the number of times each factor is repeated (the run lengths). The last line calculates the number of divisors using the above-mentioned formula.

i <- 0
divisors <- 0
while (divisors < 500) {
    i <- i + 1
    triangle <- (i * (i+1)) / 2
    pf <- prime.factors(triangle)
    alpha <- rle(pf)
    divisors <- prod(alpha$lengths+1)
answer <- triangle

Euler Problem 11: Largest Product in a Grid

Euler Problem 11 Definition

In the 20×20 grid below, four numbers along a diagonal line have been marked in red.

Euler problem 11

The product of these numbers is 26 × 63 × 78 × 14 = 1,788,696. What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20 by 20 grid?


The solution applies straightforward vector arithmetic. The product of all verticals is an array of the product of rows 1 to 4, rows 2 to 5 and so on. The code uses a similar logic for the horizontals and the diagonals.

#Read and convert data
square <- readLines("Euler/p011_matrix.txt")
square <- as.numeric(unlist(lapply(square, function(x){strsplit(x, " ")})))
square <- matrix(square, ncol=20)

# Define products
prod.vert <- square[1:17, ] * square[2:18, ] * square[3:19, ] * square[4:20, ]
prod.hori <- square[,1:17] * square[,2:18] * square[,3:19] * square[,4:20]
prod.dia1 <- square[1:17, 1:17] * square[2:18, 2:18] * square[3:19, 3:19] * square[4:20, 4:20]
prod.dia2 <- square[4:20, 1:17] * square[3:19, 2:18] * square[2:18, 3:19] * square[1:17, 4:20]

answer <- max(prod.vert, prod.hori, prod.dia1, prod.dia2)




Euler Problem 10: Summation of Primes

Euler Problem 10 asks for the summation of primes. Computationally this is a simple problem because we can re-use the prime sieve developed for problem 3.

When generating a large number of primes the erratic pattern at which they occur is much more interesting than their sum. Mathematicians consider primes the basic building blocks of number theory. No matter how hard we look, however, they do not seem to obey any logical sequence. This Euler Problem is simply

Euler Problem 10 Definition

The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million.


The sieve of Eratosthenes function used in Euler Problem 3 can be reused once again to generate the prime numbers between two and two million. An interesting problem occurs when I run the code. When I sum all the primes without the as.numeric conversion, R throws an integer overflow error and recommends the conversion.

primes <- esieve(2e6)
answer <- (sum(as.numeric(primes)))

This results in a vector containing the first 148,933 prime numbers. The largest prime gap is 132 and it seems that sexy primes are more common than any of the other twin primes (note the spikes at intervals of 6 in the bar chart).

Euler Problem 10: Prime gaps for all primes up to two million

The summing of primes reveals an interesting problem in mathematics. Goldbach’s conjecture is one of the oldest and best-known unsolved problems in number theory and states that:

Every even integer greater than 2 can be expressed as the sum of two primes.

Note that this conjecture is only about even numbers. Goldbach also theorised that every odd composite number can be written as the sum of a prime and twice a square. This conjecture is the subject of the Euler Problem 46, which I will work on soon.

Euler Problem 9 : Special Pythagorean Triple

Euler Problem 9 Definition

Euler Problem 9: Pythagorean Triples

Scatter plot of the legs (a,b) of the first Pythagorean triples with a and b less than 6000. Negative values are included to illustrate the parabolic patterns. By Dearjean13Own work, CC BY-SA 4.0, Link

A Pythagorean triple is a set of three natural numbers, a < b < c , for which, a^2 + b^2 = c^2 . For example:

3^2 + 4^2 = 9 + 16 = 25 = 5^2 .

There exists exactly one Pythagorean triplet for which a + b + c = 1000 .

Find the product of a, b and c.

Brute Force Solution

This solution uses brute force and checks all combinations of a, b and c. To limit the solution space I used the fact that a < b < c, which implies that a < s/3,  and a < b < s/2, where s is the sum of the three sides.

a <- 0
b <- 0
c <- 0
s <- 1000
found <- FALSE
for (a in 1:floor((s/3))) {
    for (b in a:(s/2)) {
        c <- s - a - b
        if (a^2 + b^2 == c^2) {
            found <- TRUE
    if (found) 
answer <- a * b * c


Euler Problem 8: Largest Product in a Series

Euler Problem 8 is a combination of mathematics and text analysis. The problem is defined as follows:

Euler Problem 8 Definition

The four adjacent digits in the 1,000-digit number below that have the greatest product are 9 \times 9 \times 8 \times 9 = 5832.


Find the thirteen adjacent digits in the 1,000-digit number that have the greatest product. What is the value of this product?


The first step is to define the digits as a character string. The answer is found by cycling through all 13-character n-grams to find the highest product using the prod function.

# Define digits
digits <- "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450"

ngram <- 13  # Define length
answer <- 0
# Clycle through digits
for (i in 1:(nchar(digits)-ngram+1)) {
    # Pick 13 consecutive digits
    adjecent <- substr(digits, i, i + ngram - 1)
    # Define product
    mult <- prod(as.numeric(unlist(strsplit(adjecent, "")))) # Largest? if (mult > answer) 
        answer <- mult

Finding n-grams is a basic function of text analysis called tokenization. The Google Ngram Viewer provides the ability to search for word strings (n-grams) in the massive Google books collection. This type of data can be used to define writing styles and analyse the evolution of language.

Euler Problem 7: 10,001st Prime

Euler Problem 7 Definition

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 1,0001st prime number?


The function determines whether a number is a prime number by checking that it is not divisible by any prime number up to the square root of the number.

The Sieve of used in Euler Problem 3 can be reused to generate prime numbers.

This problem can only be solved using brute force because prime gaps (sequence A001223 in the OEIS) do not follow a predictable pattern. <- function(n) {
    primes <- esieve(ceiling(sqrt(n)))

i <- 2 # First Prime
n <- 1 # Start counter
while (n<10001) { # Find 10001 prime numbers
    i <- i + 1 # Next number
    if( { # Test next number
        n <- n + 1 # Increment counter
        i <- i + 1 # Next prime is at least two away

answer <- i-1

The largest prime gap for the first 10,001 primes is 72. Sexy primes with a gap of 6 are the most common and there are 1270 twin primes.

Euler Problem 7: Prime gap frequency distribution for the first 10001 primes.

Prime gap frequency distribution for the first 10001 primes.

Euler Problem 6: Sum Square Difference

Euler Problem 6 Definition

The sum of the squares of the first ten natural numbers is:

1^2 + 2^2 + \ldots + 10^2 = 385

The square of the sum of the first ten natural numbers is:

(1 + 2 + \ldots + 10)^2 = 552 = 3025

The difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.


This is a straightforward problem for vector processing capabilities in R.

answer <- sum(1:100)^2-sum((1:100)^2)

This problem can also be solved arithmetically. When Carl Friedrich Gauss (1777-1855) when he was a child his teacher challenged his students to add all numbers from 1 to 100. All of his friends struggled to add all the 100 numbers one by one but Carl completed the task in a few seconds.

The same principle applies to computing. The first solution is like Carl’s classmates who slavishly add all numbers. This solution is based on arithmetic progressions.

The sum of natural numbers can be expressed as:

\frac{n(n + 1)}{2}
The sum of the squares of the first n natural numbers is:

With these two formulas, a fast solution without having to use loops can be written.

n <- 100
answer <- ((n*(n+1))/2)^2 - (n*(n+1)*(2*n+1))/6

Euler Problem 5: Smallest Multiple

Euler Problem 5 relates to the divisibility of numbers.

Euler Problem 5

2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?


The solution will also be divisible by the number 1 to 10 so we can start at 2520 and increment by 2520. The loop checks whether the number is divisible by the numbers 1 to 20.

# Start as high as possible
i <- 2520
# Check consecutive numbers for divisibility by 1:20
while (sum(i%%(1:20)) != 0) {
    i <- i + 2520 # Increase by smallest number divisible by 1:10
answer <- i

Euler Problem 4: Largest Palindromic Product

Euler Problem 4 Definition

A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers.


This code searches fo palindromic numbers, starting at the highest values. The palindromes are tested by converting the number to a character string. When the first palindromic number is found, the loop is broken.

# Cycles through all number combinations, starting at 999
for (i in 999:900) {
    for (j in 990:900) {
        word <- as.character(i * j)
        # Create reverse
        reverse <- paste(rev(unlist(strsplit(word, ""))), collapse = "")
        # Check whether palindrome
        palindrome <- word == reverse
        if (palindrome) 
    if (palindrome) {
answer <- i * j

Searching a bit further results in twelve palindromic numbers. Sequence A002113 in the OEIS lists palindromes in base 10. Mathematicians used these numbers only for fun, without any purpose in reality. The graph below shows the number of palindromic numbers between 0 and 1 million.

Euler Problem 4 : Palindromic numbers

Palindromic number count